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Random galvanic contacts are formed between the edges of the electrical sheets when punched and pressed. In this paper, finite
element formulation is introduced with a suitable boundary condition to account for these interlaminar contacts. The spatial variation
of the conductivity at the edges of these electrical sheets is discretised using the Karhunen-Loeve expansion and propagated through
the finite element formulation. The response to be obtained is approximated using polynomial chaos expansion. Then, the additional
losses due to the interlaminar contacts are estimated from the solution obtained from different stochastic methods. The accuracy
and computation time of these novel stochastic approaches are also discussed. The accuracy and computation time of these novel
stochastic approaches are also discussed.

Index Terms—Finite element analysis, Monte Carlo method, polynomial chaos expansion, random field, stochastic process.

I. INTRODUCTION

PUNCHING and pressing of electrical sheets forms burrs
and deteriorate the magnetic properties of their edges.

These burrs deteriorate the insulation of adjacent sheets and
make random galvanic contact between the sheets [1]. These
galvanic contacts are stochastic in nature. There are different
stochastic models available in the literature to account for the
uncertainties. All these studies are mostly related to the field of
mechanical and civil engineering. Uncertainties in the model
geometry and different stochastic methods are discussed in
[2]- [4]. In the field of electromagnetism, stochastic studies
are ongoing and there are some studies done to quantify the
uncertainties introduced in the magnetic properties of electri-
cal sheets due to manufacturing effects [5]. This stochastic
behaviour of magnetic properties is used as input in stochastic
finite element models [6] to study the variability in the losses
of electrical machine.
In this paper, uncertainty introduced due to the formation
of burrs during manufacturing process is modelled by using
electrical conductivity at the edges of the sheets as a random
field. Firstly, a deterministic finite element formulation is
introduced to model the conducting edge of UI electrical sheet
as shown in Fig. 1. Then, the random field is dicretised and
implemented in the finite element method. Finally, the losses
due to the conducting edge in the UI sheet are estimated
and the computation time and accuracy of different stochastic
methods are studied.

II. METHODS

A. Model formulation
The conducting edge in a two-dimensional finite element

method is modelled using the conventional A−φ formulation
with an additional integro-differential equation. The field
equation solved in UI sheet is given by,
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Equation (1) is valid for all the conducting (σ 6= 0), non-
conducting (σ = 0) and source region. Js is source current
density, µ is the permeability of iron and σ is the electrical
conductivity of edges of electrical sheets. u is the induced
voltage at the conducting edges due to time varying magnetic
field, ez is the unit vector parallel to z direction. The presence
of galvanic contacts along the edges causes the induced current
at one edge to return it from the opposite edge. Hence, the net
induced current flowing through the burred edges is forced to
be zero.

The induced current is given in (2), where surface (S) is
the area of burred region in which induced current density is
perpendicular. Then, the net current is given by,
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Finally (1), is written as,
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The additional integro-differential equation that ensures the
net induced current to be zero forms a denser matrix and in-
creases the computation time. Equation (4) is the deterministic
mathematical equation where uncertainty in the conductivity
is propagated. Hence, computationally efficient and accurate
stochastic method is required.

B. Stochastic finite element formulation

1) Series Expansion
The conductivity σ̂(x, θ) at the edges is considered as

a random field, θ is used as the symbol to represent it as
a random quantity. It is then approximated as a spectral



Fig. 1. UI electrical sheet with conducting edge

decomposition of its auto covariance function ρ(x,x′) which
is truncated after the Mth term and is given by,

σ̂(x, θ) = σµ +

M∑
k=1

√
λkφk(x)ζk(θ),

where,
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This Karhunen-Leove (KL) expansion basically requires
the solution of a eigenvalue problem. λk, φk(x) are the
eigenvalues and the eigen function, respectively. x is the
two-dimensional domain of geometry, σµ is the mean value
and ζk are the basis of independent random variable. The
solution of eigenvalue problem is obtained considering the
exponential autocorrelation function [7].

2) Spectral stochastic finite method element (SSFEM)
The conductivity is discretised and then propagated through

the deterministic mathematical formulation. In our problem,
the magnetic vector potential is the response and it is ap-
proximated using a polynomial chaos expansion (6). The
coefficients (Aj) are to be determined and Ψj are the basis
of hermite polynomials.
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The expansion size of the polynomial is given by P and o is
the order of the polynomial.

Finally, after discretising (4) in space and implementing
the expansion of conductivity, the system of matrices (7) is
obtained. For simplicity, symbol θ is omitted and only time
harmonic case is considered.

[Sij +jω (Tij + Iij)]n×P,n×P · [Aj ]n×P,1 = [Jj ]n×P,1 , (7)

where, i, j = 0,. . . , P-1. The total dimension of the matrix is
n × P, n × P and n is the total number of degree of freedom
in the finite element method. The discretised conductivity is
assembled as given by,
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Similarly, Iij and Sij are assembled. However, reluctivity
which is not a random quantity needs to be expanded to M
terms for the sake of computational simplicity.

C. Monte Carlo Method (MCM)

In Monte Carlo method, finite element formulation (4) is
solved for all possible samples of conductivity. The conduc-
tivity at the edges of the sheets are taken randomly from
thousands of sample spaces. The samples are generated from
MATLAB. The interlaminar loss is calculated using both
MCM and SSFEM.

III. RESULTS AND DISCUSSION

The conductivity is considered to be a log-normal field with
a mean value of 1.5 MS/m and a coefficient of variance of
0.1. However, it was modified to be as a Gaussian field so
that the KL expansion can be used since KL converges well
with a Gaussian field. The modification will be discussed in
detail in the full paper. The mean value of the interlaminar loss
computed at 50 Hz using SSFEM and Monte Carlo method
was 63 W and 65 W, respectively.

The computation time can be reduced significantly using
SSFEM when compared to MC. The interlaminar loss was
calculated using different stochastic approaches and an error
of 3% was obtained from SSFEM when compared to MC at
o=4 and M=4. The accuracy of the methods can be improved
based on truncation of series. The error and sensitivity analysis
on the computed loss will be presented in the full paper.

REFERENCES

[1] P. Baudouin, M. D. Wulf, L. Kestens, and Y. Houbaert, “The effect of
the guillotine clearance on the magnetic properties of electrical steels,”
Journal of Magnetism and Magnetic Materials, vol. 256, no. 13, pp. 32
– 40, 2003.

[2] B. Sudret and D. Kiureghian, “Stochastic finite elements and reliability:
A state of the art report,” University of California, Tech. Rep. Report
UCB/SEMM-2000-08, 2000.

[3] R. Gaignaire, R. Scorretti, R. Sabariego, and C. Geuzaine, “Stochastic
uncertainty quantification of eddy currents in the human body by poly-
nomial chaos decomposition,” IEEE Transactions on Magnetics,, vol. 48,
no. 2, pp. 451–454, Feb 2012.

[4] R. Gaignaire, S. Clenet, O. Moreau, and B. Sudret, “Current calculation
in electrokinetics using a spectral stochastic finite element method,” IEEE
Transactions on Magnetics, vol. 44, no. 6, pp. 754–757, June 2008.

[5] R. Ramarotafika, A. Benabou, and S. Clenet, “Stochastic modeling of soft
magnetic properties of electrical steels: Application to stators of electrical
machines,” IEEE Transactions on Magnetics,, vol. 48, no. 10, pp. 2573–
2584, Oct 2012.

[6] K. Beddek, Y. Le Menach, S. Clenet, and O. Moreau, “3-d stochastic
spectral finite-element method in static electromagnetism using vector
potential formulation,” IEEE Transactions on Magnetics,, vol. 47, no. 5,
pp. 1250–1253, May 2011.

[7] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral
Approach, ser. Civil, Mechanical and Other Engineering Series. Dover
Publications, 2003.


